Наноудобрение нового поколения Терра Органик

Микрогуматы и возможность получения экологически безопасной продукции растениеводства

Микрогуматы и сохранение экосистемы планеты

Биоорганическое удобрение Терра Органик и проблемы восстановления плодородия почвы

Значение лесов в экологическом балансе планеты

Выращивание овощей и фруктов с применением микрогуматов

 

 

 

 Основные области применения нанотехнологий и наноматериалов в АПК 

 При развитии биотехнологии, разработке новых материалов нанотехнологии имеют очень хорошие перспективы. Среди наиболее перспективных научных направлений в области биологии и сельского хозяйства эксперты называют воссоздание живой ткани как растительного, так и животного происхождения, получение новых материалов, создаваемых из заданных атомов и молекул. Прогнозируется появление новых открытий в биологии, химии и физике, способных оказать мощное воздействие на развитие цивилизации.

       По прогнозам Министерства торговли Великобритании, в 2015 г. спрос на нанотехнологии составит не менее 1 трлн. долларов в год, а численность специалистов, занятых в данной отрасли, вырастет до 2 млн. человек. Американская ассоциация «National Science Foundation», прогнозирует увеличение объема рынка товаров и услуг в мире с использованием нанотехнологий в ближайшие 10-15 лет до 1 трлн. долларов. В сфере здравоохранения использование нанотехнологии позволит увеличить продолжительность жизни и расширить физические возможности человека. В фармакологии в ближайшие 10-15 лет около половины всей продукции будет производиться с использованием нанотехнологии, что составит объем более 180 млрд. долларов. В химической промышленности нанотехнологии уже применяются во многих химических процессах, причем рост рынка составляет приблизительно до 100 млрд. долларов в год. По прогнозам экспертов рынок товаров с использованием нанотехнологий будет увеличиваться на 10% в год.

     В сфере защиты окружающей среды применение нанотехнологий ускорит развитие возобновляемых источников энергии, обеспечит более экономичные способы фильтрации воды, что позволит уменьшить загрязнение окружающей среды и будет способствовать экономии значительных ресурсов.

     Весьма актуальна проблема обеспечения человечества качественной питьевой водой. По оценкам экспертов к 2050 году две трети населения Земли будут испытывать недостаток в пресной воде. Нанотехнологии позволят решить эти проблемы за счет использования недорогих децентрализованных систем очистки и опреснения воды, систем отделения загрязняющих веществ на молекулярном уровне и нанофильтрации.

     В сельском хозяйстве нанотехнологии помогут увеличить урожайность сельскохозяйственных культур, сократить применение минеральных удобрений и пестицидов, помогут перевести значительные объемы сельскохозяйственной продукции в экологически безопасную область, увеличить производство натуральных продуктов. Согласно статистике численность мирового населения к 2050г. достигнет 8,9 млрд. человек, что вызовет существенное увеличение потребления продуктов питания.

     Применение нанотехнологий позволит изменить технику возделывания земель за счет использования наносенсоров, нанопестицидов и системы децентрализованной очистки воды. Нанотехнологии сделают возможным лечение растений на генном уровне, позволят создать высокоурожайные сорта, особо стойкие к неблагоприятным экологическим условиям. Нанотехнологии могут быть успешно применены для создания биосовместимых материалов, восстановления тканей, создания неотторгаемых организмом искусственных тканей и сенсоров в животноводстве, а также для снижения негативного давления на природную среду.

 

Биотехнология и генная инженерия

 

     Развитие сельского хозяйства в значительной степени определяется необходимостью постоянного увеличения объемов выращиваемой продукции и сокращения потерь в процессе уборки, переработки, хранения, что приводит к интенсификации сельскохозяйственного производства и увеличению антропогенной нагрузки на окружающую среду. Теоретически интенсификация возможна в большинстве развитых стран, но она обычно приводит нарушению экологического равновесия. В этой связи постоянно возрастает интерес к нанотехнологиям в плане обеспечения населения безопасным продовольствием при соблюдении экологических норм.

     Анализ отечественных и зарубежных разработок показывает, что наиболее востребованными нанотехнологиями для решения задач сельского хозяйства, будут разработки в области биотехнологии и генной инженерии.

     Нанобиотехнология занимается биообъектами и биопроцессами на молекулярном и клеточном уровнях. С ее помощью можно решить многие проблемы биологии клетки и в целом сельского хозяйства. Нанобиотехнология открывает широкие возможности в переработке сельскохозяйственной продукции. Для повышения эффективности перерабатываемого сырья и получения новых видов продукции разрабатываются технологии получения пищевых добавок и лекарств методами микроинкапсулирования. В ее основе лежит производство свободносыпучих нанопорошков и распыление их в восках. Приготовленные таким образом продукты находят применение как исходное сырье для фармацевтической промышленности и так же при изготовлении продуктов питания. Это могут быть лекарственные вещества, витамины, минералы, сырье, получаемое из растений, или другие специальные продукты, для которых необходимо сохранить вкус и стабильность при хранении. В капсулированном виде они обладают повышенной стабильностью ингредиентов и пониженной реакционной способностью по отношении к другим компонентам, возможностью регулирования скорости выделения действующего вещества от нескольких минут до нескольких часов. Такой способ получения частиц позволяет строго контролировать процессы смешения всех ингредиентов в соответствии с рецептурой и последующей операцией таблетирования, что очень важно при производстве сложных препаратов. Капсулирование придает известным продуктам новые и неожиданные свойства, такие как маскировка вкуса, порошкообразные ароматические вещества, лучшее распределение пигментов или лекарств в композициях и т.д..

     Одним из самых многообещающих направлений научных разработок в этой сфере является создание наноконструкций. Большинство растений и животных на 95% состоит всего из четырех атомов: атомов водорода, кислорода, азота и углерода. Для того чтобы собирать биологические нанообъекты и связывать их другими молекулами, необходимо организовать идентификацию на молекулярном уровне. Атомы обладают возможностью самоорганизовываться или организовываться посредством опорной поверхности, поэтому они наиболее перспективны в качестве основы при производстве биологических наноструктур, новых биоматериалов.

     Огромные возможности нанобиотехнологии открывает клеточная инженерия. Растительные клетки из зон роста могут служить источником генетического потенциала, свойственного данному растению. Используя способность растительных клеток меристимной зоны превращаться в специальных средах в сформированное растение, меристимные клетки применяют для получения безвирусных растений и в селекционной работе для получения растений с заранее нужными свойствами.

     Развивающиеся направления физико-химической биологии в свою очередь расширяют возможности применения нанобиотехнологии. Это относится к генной инженерии, к созданию и использованию генетически модифицированных клеток. Сочетание различных фрагментов ДНК, позволяющее создавать необходимые генетические программы, показывает научную значимость исследований в данном направлении.

     В целях развития нанотехнологий в селекционной работе разрабатываются приемы, обеспечивающие возможность создавать и модифицировать объекты, с характерными размерами менее 100 нм. Сегодня молекулярно-генетические методы позволяют расширить и дополнить используемые эколого-географические и морфолого-биологические методы традиционной селекции. Нанобиотехнологии, как и классическая селекция, могут существенно влиять на производство и качество урожая, продуктивность растений, а также на поддержание и воспроизводство сортов с использованием генетической изменчивости и разнообразия. Новые нанобиотехнологические методы позволяют создавать рекомбинантные молекулы ДНК и новые организмы с заданными свойствами, что в свою очередь позволяет добиться получения принципиально новых сортов растений и сельскохозяйственных материалов.

     Нанобиотехнология вносит существенный вклад в улучшение комплексного питания растений, повышение сопротивляемости культур неблагоприятным климатическим условиям, стрессам, а также в борьбу с болезнями и вредителями. Одним из основных направлений нанобиотехнологии растений является получение культурных растений, не восприимчивых к воздействию вредных веществ. Гербициды широкого спектра действия, уничтожая сорные растения, оказывают угнетающее действие и на культурные посевы. Работа над данной проблемой ведется в двух направлениях: прямая селекция и создание трансгенных растений путем введения в клетку генов гербицид-толерантности.

     Введение генов инсектицидного белка-токсина и растительных белков защищает генетически модифицированные (ГМ) растения от широкого круга вредных насекомых. Применять инсектициды при выращивании таких растений не требуется. При изменении соотношения насыщенных и ненасыщенных жирных кислот в мембранах растительных клеток были выведены холодоустойчивые, засухоустойчивые формы ГМ растений, а также ГМ растений, устойчивых к засолению почв, что значительно расширило ареал произрастания многих культурных растений.

     Необходимо отметить, что существует серьезная опасность использования генно- модифицированных организмов (ГМО) в пищевых цепях людей и животных.

     Бурный прогресс в области молекулярной и клеточной биологии обусловили появление беспрецедентных возможностей по изменению свойств живых организмов. Геномные исследования позволили предложить новые способы лечения различных ранее неизлечимых заболеваний, создать новые, строго специфичные лекарственные препараты и многое другое.

     Вместе с тем, как это всегда бывает в случае грандиозных открытий, наряду с очевидными, гуманными формами реализации научных открытий, появились новые практические направления, целесообразность которых вызывает серьезные сомнения. Одним из ярчайших представителей такого направления является промышленное производство и применение ГМО. Сегодня целые отрасли промышленности занимаются производством таких ГМО, как растения, животные, рыбы, микроорганизмы.

     Оставляя в стороне вопросы эффективности использования ГМО с точки зрения урожайности, пищевой ценности и т.д., следует обратить внимание на проблемы, которые равнозначны угрозам, сопровождающим внедрение ГМО. Масштабное выращивание ГМ растений приводит к драматическим изменениям биоценоза посевных площадей и прилегающих территорий. Вместо ожидаемого уменьшения применения минеральных удобрений и пестицидов при выращивании ГМ растений на практике происходит значительное увеличение их использования. При этом, как правило, трансгенные организмы вытесняют природные, препятствуя сохранению и восстановлению естественного биологического разнообразия и баланса. Это представляет доказанную угрозу экологической безопасности государства.

     Применение ГМО в качестве продуктов питания показало, что разрешение на использование получает примерно только 25% трансгенов, направляемых на испытания. Это говорит о том, что 75% трансгенных организмов не могут быть использованы в качестве пищевой продукции. Уже доказано, что некоторые виды трансгенов токсичны, являются причиной аллергических реакций и вызывают подавление активности иммунной системы. В России и США в 4-5 раз увеличились аллергические заболевания, а в Скандинавских странах, где категорически запрещены трансгенные организмы, аллергические заболевания постоянно снижаются. Таким образом, ГМО представляют реальную угрозу продовольственной безопасности.

     Оставляя на совести защитников ГМО высказывания о «…встраивании животных или растительных генов в геном человека…», следует откровенно сказать, что ГМО потенциально могут рассматриваться как новые виды биологического оружия, расширяющего пути возможных био-террористических атак. Эффект от применения такого оружия может быть выражен не столько в увеличении летальных случаев в настоящем, сколько в росте онкологических, сердечно-сосудистых, нейро-дегенаративных, аутоиммунных заболеваний, вплоть до изменения психики и поведения человека, других заболеваний в последующие периоды.

     Таким образом, неконтролируемый оборот ГМО представляет потенциальную угрозу экологической, биологической и продовольственной безопасности государства.

 

Животноводство

 

     Наибольшее распространение в сельском хозяйстве нанотехнологии получили в ветеринарии, птицеводстве, кормопроизводстве. Благодаря нанотехнологиям повышается продуктивность, улучшаются качество продукции и условия содержания животных.

     В Калужском региональном центре «Нанобиотехнология» впервые были выполнены исследования влияния ультрадисперсных нанопорошков (УДНП) металлов на процессы в желудочно-кишечном тракте молодняка домашних животных. Разработаны перспективные биоцидные нанопрепараты, в которых присутствуют УДНП металлов. Такое противодействие патогенной микрофлоре без нарушения генома наследственности целенаправленно регулирует процессы метаболизма питательных веществ и повышает продуктивность домашних животных за счет повышения усвояемости кормов. Металлы в ультрадисперсной форме имеют наряду с высокими бактерицидными свойствами существенно меньшую токсичность и не накапливаются в организме.

     Наночастицы бластомерных эмбриональных клеток, включающие в себя внутриклеточные живые структуры рибосомы, митохондрии, вакуоли и лизосомы, вырабатывают коллоидные жизнеспособные системы, состоящие из полипротеидов, ферментов, иммуннореактивных пептидов. Последние положительно влияют на клеточный иммунитет, обменные процессы в клетке и выполняют восстановительную роль при воспалительных процессах. При внутримышечном введении препаратов оплодотворяемость коров повышается на 8-10%.

     Наряду с традиционными химическими лекарствами для животных все более широко применяется биологически активная терапия, дополняющая химическое лечение. Применение препаратов природного происхождения нацелено на использование возможностей организма к саморегуляции. Например, лекарство нанобетулин, используемое как в лечебных, так и профилактических целях в виде аэрозолей или наносуспензий с размерами частиц 250 - 700 нм. Основным действующим веществом является экстракт бересты - бетулин, обладающий биологически активными свойствами: гепатопротекторным, гастрозащитным, желчегонным, гипохолестеринемическим, противовоспалительным, противораковым, антиоксидантным.

     Доходности животноводства определяется стоимостью кормов. Разработана нанотехнология электроконсервирования силоса зеленых кормов электроактивированным консервантом на основе электролиза 1%-ного раствора поваренной соли, что принципиально повышает сохранность кормов. Использование электроактивированных растворов позволяет отказаться от дорогостоящих химических консервантов, применяемых для заготовки силоса, повысить сохранность силоса. На обработку 1 т силосуемой массы требуется 10-15 л электроконсерванта, при этом удои молока при скармливании рапсового силоса увеличиваются на 8-10%, а среднесуточный привес коров — на 15-18%.

     Строительство свинокомплексов на 100-500 тыс. голов стало опасным для молодняка из-за наличия в воздухе аммиака и углекислого газа, концентрация которых достигает, особенно в летний период, предельно допустимой нормы 0,02 мг/л. Электрохимическая очистка загрязненного воздуха без выброса в окружающую среду возможна путем пропускания его через нанодисперсный раствор воды с гашеной известью.

 

Растениеводство  

 

     Представляет интерес, разработанная Санкт-Петербургским государственным аграрным университетом, технология заключения нанопорошков удобрений в микрокапсулы. Активная часть удобрений включена в оболочки из малорастворимых восков, при этом питательные вещества выделяются постепенно, существенно снижая химическую нагрузку на почву.

     Перспективной является технология применения биологически активных нанодобавок, в которых в качестве стимуляторов роста растений и активизаторов обменных процессов применяются микроэлементы. Соли металлов в таких удобрениях заменены ультрадисперсными порошками металлов (УДПМ). В Рязанской государственной сельскохозяйственной академии данные исследования проводятся более 10 лет. Определены оптимальные концентрации УДП железа, кобальта и меди в которых они могут быть использованы как микроудобрения, повышающие накопление биологических активных веществ в растениях. Обработка УДПМ семян растений перед посадкой возможна вместе с их протравливанием, при этом незначительный расход (3-5 мг УДПМ на 1 га посевов) многократно окупается прибавкой урожая.

     В последние годы в МГАУ им. В, П. Горячкина разработан ряд наноэлектротехнологий для повышения эффективности в семеноводстве. Электрофизическое воздействие на семена способствует увеличению энергии прорастания, всхожести, ускорению пробуждения семян. Наилучшие результаты стимуляции данный метод показывает на наихудшем посадочном материале. Необходимо отметить, что в случае неправильно выбранной дозы воздействия предпосевная обработка может угнетать развитие растений, поэтому данный метод требует дальнейших научных исследований.

     Метод диэлектрического сепарирования семян разработан и применяется для повышения качества семенного материала. В процессе сепарирования удаляются травмированные, поврежденные, и что очень важно, карантинные семена, что имеет большое значение для селекции и семеноводства. При вторичной очистке, сортировке и калибровке семян, на всех этапах селекционно-семеноводческого цикла, использование диэлектрических сепараторов позволит ежегодно экономить до 3,5 млн. т зерна и повысить урожайность на 20-30%.

     Обработка семян магнитным полем увеличивает водопоглощение, энергию прорастания и ускоряет развитие растений на ранних стадиях. Разработаны установки для магнитной обработки семян, которые легко устанавливаются на погрузчик или протравливатель любого типа, не требуют энергозатрат при обработке. С помощью обработка магнитным полем активизируется ферментативный процесс в семенах, что интенсифицирует гидролиз питательных веществ эндосперма. Повышается степень воздействия питательных веществ эндосперма на формирование проростка. Увеличивается скорость прорастания семян, у проростка формируется более мощная корневая система. Нанотехнологии предпосевной обработки семян и дезинсекции семян магнитным полем можно использовать как альтернативу химическим методам, что, безусловно, является весьма перспективным экологическим начинанием.

     Для исключения самоувлажнения семян разработана технология их хранения под постоянным отрицательным электрическим потенциалом, при котором происходит самовыделение влаги и естественное подсушивание.

     Без создания приборов, контролирующих качество семян, невозможно дальнейшее развитие семеноводства. Большие перспективы в этом направлении имеют приборы, основанные на измерении не только электрических свойств, но и спектральных характеристик семян по отражению, поглощению и пропусканию в инфракрасной области. Использование наноэлектротехнологий, в частности взаимодействия внешних электромагнитных полей с биологическими полями семян, открывает широкие возможности для семеноводства. Весьма перспективны исследования низкоэнергетических электромагнитных полей информационного уровня.

     Для растениеводства играет большую роль борьба с болезнями и вредителями сельскохозяйственных культур. Урон, наносимый сельскому хозяйству болезнями и вредителями, составляет до 175 млрд. рублей ежегодно. Насекомые-вредители и болезни семян в период хранения приводят к потере злаковых культур до 10%, бобовых – от 15 до 60%. Используемые тепловые и химические методы дезинсекции и дезинфекции семян являются энергоемкими и экологически опасными. Грамотная обработка семян электромагнитными излучениями СВЧ-диапазона при закладке на хранение полностью обеззараживает их от патогенной микрофлоры и насекомых-вредителей, что исключает применение ядохимикатов и фумигацию семян.

     Для дезинсекции семян может быть использован импульсный режим СВЧ-обработки, обеспечивающий сверхвысокую напряженность электромагнитного поля в импульсе и, как следствие, гибель насекомых-вредителей, что дает возможность полностью отказаться от использования ядохимикатов и других средств протравливания. Сущность данной технологии заключается в дозированном воздействии микросекундной длительности на семена. Под воздействием СВЧ-импульсов семенной материал полностью обеззараживается от болезней, очищается от насекомых-вредителей, при этом в семенах активизируются ростовые процессы. Анализ практического использования указанного СВЧ метода показал, что по сравнению с ядохимикатами энергоемкость обработки снижается в 15-20 раз, на два-три порядка сокращается время обработки.

     Начаты работы по методам реструктуризации воды для безъядохимикатной предпосевной обработки семян и защиты растений от вредителей и болезней. Новые методы обработки семян «структурированной водой» по сравнению с химическими методами представляются весьма перспективными.

     Достаточно перспективный способ повышения эффективности производства продукции растениеводства - применение биологически активных нанопорошков. Железо в форме нанопорошка легко адсорбируется на подготовленных к посеву семенах, активизируя ферментативную активность, что повышает всхожесть семян. Железо в форме нанопорошка повышает урожайность и устойчивость растений к неблагоприятным условиям среды.

     Исследование влияния нанопорошка железа на рост, развитие и продуктивность различных культур (кукуруза, пшеница, подсолнечник) показали, что урожайность зерновых повышается в среднем на 15%, зеленой массы растений - на 25%, клубнеплодов - на 30%. При этом увеличивается содержание клейковины в зерне, содержание масла в семенах подсолнечника и содержание незаменимых аминокислот в листостебельной массе кормовых культур. Расход нанопрепарата незначителен и составляет около 3 г на 1 т семян.

     Основываясь на исследованиях С.Н. Виноградского, Н.И. Вавилова, в конце 1990-х годов была разработана технология нанодробления и использования микрогуматов (наногуматов) в растениеводстве. Растения, выращенные с применением микрогуматов, отличаются высоким содержанием микроэлементов, что является ценным показателем в кормопроизводстве. Основная препаративная форма - коллоидная суспензия, включающая в себя действующее вещество в виде наночастиц гуматов с присоединенными к ним микроэлементами и биологически активными веществами. Полевые испытания показали высокие прибавки урожаев практически по всем сельскохозяйственным культурам, при этом прибавки урожая по зерновым в условиях полевого опыта составляли до 60%. Данные цифры многократно перепроверялись и на сегодняшний день применение микрогуматов дает гарантированную прибавку урожая по зерновым от 25% (Кубань, Россия) до 68% (Бурса, Турция).

     Применение мелкодисперсных аэрозолей играет важную роль в растениеводстве для дезинфекции, дезинсекции и дезодорации. Более 40% собираемого мирового урожая сберегается благодаря защите растений аэрозолями. При конденсации паров аэрозоля на бактериальном субстрате на поверхности стен и оборудования образуется бактерицидная пленка. Воздух помещения обеззараживается за счет испарения дезинфицирующего вещества из капель аэрозоля. Одной из особенностей веществ, переведенных в аэрозольное состояние, является значительное увеличение их поверхности. Площадь поверхности частиц, при одинаковой суммарной массе вещества, увеличивается с уменьшением их размера, поэтому эффективность их использования значительно повышается при уменьшении размеров аэрозольных частиц менее 1 мкм. Удерживание их на поверхностях увеличивается в 5-20 раз, затраты времени на обработку сокращаются в 3 раза при уровне остаточных количеств ядохимикатов в сотни раз меньшем, чем при опрыскивании.

     В последние годы созданы и широко применяются наноэмульсии, активное вещество которых заключено в нанокапсулы масла. В зависимости от вида активного вещества возможно активировать как подавление жизнедеятельности клетки, так и стимуляцию в ней биологических процессов. В качестве антибактериального средства могут использоваться наночастицы серебра, уничтожающие до 150 различных типов организмов. Для транспортировки нанокапсул к обрабатываемым объектам используют наноразмерные аэрозоли, при этом качественно улучшатся технология обработки. Придание частицам аэрозоля электрического заряда, способствует управлению процессами распространения и осаждения электроаэрозоля.

     Своевременное выявление и уничтожение возбудителей опасных и карантинных заболеваний имеет решающее значение для предотвращения возникновения и развития эпифитотий. В настоящее время изучается возможность разработки биосенсоров для оценки эффективности бактерицидов против фитопатогенных бактерий. Субъективная оценка степени развития симптомов затрудняет точную оценку биологической эффективности. В рамках данных исследований создается серия штаммов возбудителей бактериальных болезней растений с высоким уровнем флуоресценции. Для количественной оценки эффекта снижения флуоресценции планируется применение отечественной приборной базы — ПЦР-детектора «Джин». Разрабатываемая технология позволяет оценивать динамику распространения инфекции по растению и степень ее подавления при применении испытываемых препаратов. Уменьшаются затраты на испытание новых бактерицидных соединений и средств защиты растений от бактериальных болезней при оценке эффективности применения непосредственно на растении.

     Нанотехнологии охватывают многие сферы выращивания растениеводческой продукции. Перспективной разработкой для защищенного грунта является система нанофильтрации, которая исключает загрязнение воды. При выращивании зеленных культур, богатых витаминами, микроэлементами и экозащитными компонентами, наиболее широко применяется проточная тонкослойная (пленочная) гидропоника, являющаяся разновидностью водной культуры. Достоинством данного метода считается создание оптимальных условий для роста корневой системы. Растения постоянно получают достаточное количество влаги, питательных элементов и обеспечиваются кислородом воздуха, что способствует получению высоких урожаев. Так как при проточной гидропонике не используются субстраты (заменители почвы), конечный результат во многом определяется качеством питательного раствора, который зависит от состава воды. Для ее очистки целесообразно использовать фильтры, содержащие наночастицы серебра, которые обладают высокой бактерицидной активностью.

 

Переработка сельскохозяйственной продукции

 

     Широкое распространение в пищевой промышленности нанотехнологии и наноматериалы получили в области мембранной фильтрации. Применяя мембраны на основе наноматериалов и используя перепад осмотического давления, создаются машины для концентрирования различных пищевых сред, очистки соков, молока, воды и воздуха, опреснения морской воды и других целей .

     Используя мембранную нанофильтрацию, в Мордовском государственном университете разработана установка для изменения концентрации пищевых сред, которая может применяться при производстве различных продуктов питания. В конструкцию установки включены керамические фильтрующие элементы с порогом фильтрования от 5 до 200 нм, обеспечивающие высокое качество фильтрации. Размеры пор подбираются в зависимости от вида исходной среды, давления и температуры в ней, ее биохимических и физических характеристик. Применение нанофильтрации значительно упрощает задачу сохранения биологической ценности получаемых продуктов питания.

     Еще одно направление использования нанофильтрационных технологии - применение фильтров с наночастицами металлов для ингибирования процессов сквашивания и брожения. Такие фильтры обеспечивают очистку соков, нектаров, молока и другой жидкой продукции. Разработаны фильтрационные установки МФС для очистки и стабилизации напитков, осветления и очистки сиропов, соков и экстрактов. Такие установки состоят из двух-пяти фильтрационных модулей, последовательно соединенных в каскад. Под давлением часть жидкости проходит через мембрану и удаляется из установки. Концентрат последовательно проходит через все фильтрационные модули с отводом фильтрата от каждого. Во Владимире производят такие керамические нанофильтры для технологий разделения, очистки и концентрирования соков. Применяемые керамические мембраны представляют собой селективные слои сетчатой структуры из супертонких керамических волокон, связанных с подложкой керамической связкой.

     В молочной промышленности нанофильтрация позволяет выделить антибиотики, витамины, белки из молока и сыворотки при производстве как традиционных, так и новых продуктов.

     Область применения нанофильтров очень широка. Одним из примеров является использование наномембранных технологий для фракционирования молочных белков при переработке подсырной сыворотки в высококачественный заменитель жира. Мембранная фильтрация, совмещенная с тепловой обработкой белка, позволяет получать продукт, напоминающий по вкусу молочный жир. Сфера его применения достаточно широка, например, он может быть добавлен вновь в молоко, предназначенное для выработки сыра типа Гауда, содержащего на 50% меньше жира, чем обычный, однако с таким же насыщенным «жирным» вкусом.

     В настоящее время интенсивно развивается направление насыщения пищевого сырья биоактивными компонентами, например, витаминами в виде наночастиц. Нанофильтрация часто используется и для наделения пищевых продуктов ароматом, цветом и другими свойствами.

     Наноструктурные материалы позволяют очищать воды даже от тяжелых загрязнителей. Мичуринский государственный аграрный университет разработал нанофильтрующий материал, предназначенный для очистки воды. Этот материал способен улавливать из промывных вод ценные металлы. Нанофильтр толщиной в несколько сантиметров способен очистить воду от цинка, кадмия, свинца, меди, золота, серебра и фтора, исходная концентрация которых может достигать десятков граммов на один литр. Во многих нанофильтрах используются частицы серебра, в результате получаются фильтрующие материалы с улучшенными, а иногда новыми свойствами, такими как бактерицидность, каталитическая активность, избирательная адсорбция. Такие нанофильтры применяют для обработки воды, особенно в паводковые периоды, а также в установках для обеззараживания бытовых канализационных стоков.

     Перспективной разработкой являются высокоэффективные фильтры, выполненные по нанотехнологии с использованием нанотрубок и наносеребра. Такие нанофильтры можно использовать для очистки воды на предприятиях АПК, жилищно-коммунального хозяйства, бытовых нужд населения, из неочищенной речной воды с их помощью - получить высококачественную питьевую воду

     Перспективно использование нанотехнологий в хлебопекарной промышленности. В настоящее время примерно 60% муки производится из зерна невысокого качества, с повышенной обсемененностью споровыми бактериями. С другой стороны сегодня, наметилась устойчивая тенденция использования хлебобулочных изделий с целью профилактики и оздоровления населения. Использование серебросодержащих пищевых добавок представляет большой интерес для реализации данных планов. В Сибирском университете потребительской кооперации проводятся исследования по разработке серебряных нанобиокомпозитов и их введению в рецептуру хлеба. Полученные результаты показывают, что введение незначительного количества нанокомпозита существенно улучшает микробиологические показатели хлеба.

     Прекрасные возможности использования нанотехнологий имеются в масложировой промышленности. В Санкт-Петербургском государственном технологическом институте разработан метод промышленного применения катализаторов на основе наноразмерного палладия и наноуглеродных материалов для гидрирования растительного масла. В основном катализаторами гидрирования в масложировой промышленности являются катализаторы на основе никеля. Технологический процесс осуществляется при температуре до 240° С и давлении водорода до 5 атм. Поскольку сам никель и его соединения обладают аллергенным и канцерогенным действием, то после гидрирования требуются дорогостоящие операции по его отделению. Существенные технологические и экологические затруднения возникают также при утилизации отработанного никелевого катализатора. Катализаторы на основе нанопалладия имеют ряд преимуществ по сравнению с никелевым катализатором, применяемым сегодня для гидрирования растительных масел.

     В упаковочной индустрии также широко внедряются нанотехнологий. Созданы наноструктурированные упаковочные материалы, продлевающие срок хранения сельскохозяйственной продукции.

В Переславль-Залесском разработана технология получения нанодисперсий серебра, меди и их смесей. Экспериментально доказано, что образующиеся дисперсии, обладают высокой бактерицидной активностью. Покрытия на основе латексов или вододисперсионных промышленных красок с введенными в них наночастиц серебра показывают биоцидную активность. Полученные покрытия используются в качестве компонентов упаковочных бумаг с различными функциональными возможностями и могут применяться для упаковки пищевых продуктов. Аналогичные антибактериальные упаковки предохраняют колбасные изделия от порчи без использования повышенных количеств консервантов.

     Ряд продуктов требует защиты от солнечного излучения. Проблема решается за счет вакуумного напыления металлов на полимерную поверхность, но, к сожалению, при этом не учитываются различные уровни интенсивности светового излучения. Использование наночастиц фотохромных соединений позволяет получать упаковку с изменяющейся оптической плотностью, в зависимости от интенсивности светового потока.

     Нанотехнологии преобразуют пищевое производство и выводят его на новый технологический уровень.

 

Материалы раздела:

 

Наноудобрение нового поколения Терра Органик


Микрогуматы и возможность получения экологически безопасной продукции растениеводства

Микрогуматы и сохранение экосистемы планеты

Биоорганическое удобрение Терра Органик и проблемы восстановления плодородия почвы

Значение лесов в экологическом балансе планеты 

Выращивание овощей и фруктов с применением микрогуматов